Answer:
Option B
Explanation:
Let the equation of required line is
$x+2y+c=0 $ .................(i)
According to the question,
$\frac{2|C-3|}{\sqrt{5}}=\frac{|8-C|}{\sqrt{5}}$
$\Rightarrow$ $2( C-3)=8-C \Rightarrow 3C=14$
$\Rightarrow$ $C=\frac{14}{3}$
So, equation will be
$x+2y+\frac{14}{3}=0$.............(ii)
Let the normal form is
$x \cos \alpha+y \sin \alpha=p$ .....(iii)
From Eqs.(ii) and (iii) ,
$\frac{\cos \alpha}{-1}=\frac{\sin \alpha}{-2}=\frac{p}{\frac{14}{3}}$
$\Rightarrow$ $\alpha=\pi+\tan^{-1}2 $ and $p=\frac{14}{3\sqrt{5}}\Rightarrow p=\frac{14}{\sqrt{45}}$
So, required equation is
$ x \cos \alpha+y \sin \alpha$= $\frac{14}{\sqrt{45}}, \alpha= \pi+ \tan^{-1}2$