<<678910>>
41.

$\lim_{x \rightarrow -\infty}\frac{3|x|-x}{|x|-2x}-\lim_{x \rightarrow 0}\frac{\log (1+x^{3})}{\sin^{3}x}=$


A) 1

B) $\frac{1}{3}$

C) $\frac{4}{3}$

D) 0



42.

Assertion (A) if  (-1,3,2) and (5,3,2) are respectively the  orthocentre and circumcentre of a triangle , then (3,3,2) is its centroid.

 Reason  (R)  centroid of the triangle  divides  the line segment joining the orthocentrer and the circumcentre in the ratio 1:2

 Which  one of the following is true?


A) (A) and (R) are true and (R0 is the correct explanation (A)

B) (A) and (R) are true, but (R) is not the correct explanation to (A)

C) (A) is true , (R) is false

D) (A) is false , (R) is true



43.

The equation of the straight lin ein the normal form which is parallel to the lines x+2y+3=0 and x+2y+8=0 and dividing  the distance between these two lines in the ratio 1:2 internally is 


A) $x\cos \alpha+y\sin \alpha=\frac{10}{\sqrt{45}}, \alpha=\tan^{1}\sqrt{2}$

B) $x\cos \alpha+y\sin \alpha=\frac{14}{\sqrt{45}}, \alpha=\pi+\tan^{-1}{2}$

C) $x\cos \alpha+y\sin \alpha=\frac{14}{\sqrt{45}}, \alpha=\tan^{1}{2}$

D) $x\cos \alpha+y\sin \alpha=\frac{10}{\sqrt{45}}, \alpha=\pi+\tan^{1}{\sqrt{2}}$



44.

An executive in a company makes on an average 5 telephone calls per hour at a cost of rupees 2 per cell. The probability that in any hour the cost of the calls  exceeds  a sum of  rupees 4 is 


A) $\frac{2e^{4}-35}{2e^{5}}$

B) $\frac{2e^{5}-37}{2e^{5}}$

C) $1-\frac{35}{e^{4}}$

D) $1-(18.5){e^{5}}$



45.

A random variable X takes  the values 1,2,3 and 4 such that 2P(X=1)=3P (X=2)=P(X=3)=5P(X=4) . If $\sigma^{2}$  is the variance and $\mu$  is the mean of X . Then,

 $\sigma^{2}+\mu^{2}$=


A) $\frac{421}{61}$

B) $\frac{570}{61}$

C) $\frac{149}{61}$

D) $\frac{3580}{61}$



<<678910>>